Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4.
نویسندگان
چکیده
Skeletal muscle denervation causes muscle atrophy via complex molecular mechanisms that are not well understood. To better understand these mechanisms, we investigated how muscle denervation increases growth arrest and DNA damage-inducible 45α (Gadd45a) mRNA in skeletal muscle. Previous studies established that muscle denervation strongly induces Gadd45a mRNA, which increases Gadd45a, a small myonuclear protein that is required for denervation-induced muscle fiber atrophy. However, the mechanism by which denervation increases Gadd45a mRNA remained unknown. Here, we demonstrate that histone deacetylase 4 (HDAC4) mediates induction of Gadd45a mRNA in denervated muscle. Using mouse models, we show that HDAC4 is required for induction of Gadd45a mRNA during muscle denervation. Conversely, forced expression of HDAC4 is sufficient to increase skeletal muscle Gadd45a mRNA in the absence of muscle denervation. Moreover, Gadd45a mediates several downstream effects of HDAC4, including induction of myogenin mRNA, induction of mRNAs encoding the embryonic nicotinic acetylcholine receptor, and, most importantly, skeletal muscle fiber atrophy. Because Gadd45a induction is also a key event in fasting-induced muscle atrophy, we tested whether HDAC4 might also contribute to Gadd45a induction during fasting. Interestingly, however, HDAC4 is not required for fasting-induced Gadd45a expression or muscle atrophy. Furthermore, activating transcription factor 4 (ATF4), which contributes to fasting-induced Gadd45a expression, is not required for denervation-induced Gadd45a expression or muscle atrophy. Collectively, these results identify HDAC4 as an important regulator of Gadd45a in denervation-induced muscle atrophy and elucidate Gadd45a as a convergence point for distinct upstream regulators during muscle denervation and fasting.
منابع مشابه
Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy.
Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the s...
متن کاملMiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling
BACKGROUND Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the presen...
متن کاملmiRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy
Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus...
متن کاملEmerging roles for histone deacetylases in age-related muscle atrophy
BACKGROUND: Skeletal muscle atrophy during aging, a process known as sarcopenia, is associated with muscle weakness, frailty, and the loss of independence in older adults. The mechanisms contributing to sarcopenia are not totally understood, but muscle fiber loss due to apoptosis, reduced stimulation of anabolic pathways, activation of catabolic pathways, denervation, and altered metabolism hav...
متن کاملMyogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 305 7 شماره
صفحات -
تاریخ انتشار 2013